

MyDeal Universal API
Documentation

Owner MyDeal Tech team

Version 3.4

Last Updated date 30/05/2025

Last Update by AB

1

Revision History

S.N
o.

Revision Description Version API version
number

Revised By Revised
Date

1 Initial Version 1.0 1 HY 29/01/2018

2 Major Changes to Products endpoint:
-​ Shipping related fields

-​ ProductUnlimited (allow

backorders)

-​ Variations

-​ Product listing status update

Major Changes to Order endpoint –
-​ Unfulfilled orders endpoint

-​ Cancel Order endpoint

-​ Fulfill order changes

Added Pending Responses API
Added integration process & API
validation section

2.0 1 HY 16/04/2018

3 Added MyDeal Category ID Mapping
Instructions
in (0.12.1 Product models)

2.1 1 HY 27/08/2018

4 Added IsDirectImport flag to
ProductGroup to allow sellers to specify
product is direct imported or local

2.2 1 HY 10/10/2018

5 ●​ IsDirectImport flag is now made
mandatory

●​ ShippingCostCategory
“FreeShipping” Enum is
deprecated. Instead, Seller choose
“Flat” with $0
ShippingCostStandard

●​ ShippingCostExpedited is
deprecated. Currently, express
shipping is not supported but it
will be added in future releases

●​ Below optional fields are added to
ProductGroup.

-​ DeliveryTime
-​ MaxDaysForDelivery
-​ Has48HoursDispatch

2.3 1 HY 11/02/2019

6 1.​ /products/listingStatus endpoint
is updated to allow only to

2.4 1 HY 30/05/2019

2

discontinue product (making
product not live)

2.​ New ShippingCostCategory option
“FlatAnyQty” is added

7 New field “UnitPriceExcCommission” added
to OrderItems in all orders endpoints

2.5 1 HY 19/09/2019

8 New Field “CustomerDateOfBirth” added
to Order in all order retrieval endpoints

2.6 1 HY 25/11/2019

9 Order Refunds API is implemented for
partial and full refunds

2.7 1 HY 27/11/2020

10 Added RefundReason for Order Refunds
API.

2.8 1 TT 10/02/2020

11 Updated section 0.5.4 Update Products
Price and Quantity with an important
note: For variant type products, all
available variants (Buyable Products) must
be present in the Productgroup when
updates are sent

2.9 1 HY 03/09/2020

12 Updated:
●​ 0.3 removed ‘Different shipping

for variant in a product’ from out
of scope list

●​ 0.8 - 0.10 with refined integration
process instructions

●​ 0.11.6 Other Models - Field: allow
clients to send the image, weight
and dimensions at variant level
(Buyable Products).

3.0 1 TT 20/09/2021

13 1. New section ‘0.7 Categories’ added
2. Updates :
0.6 Orders ->

●​ added sub-section on OrderItems
\ combined shipping

●​ Updated description for all order
end-points to include behavior for
combined orders

0.11 Recommended frequency for API
calls

●​ Updated order fetch frequency
from 60 mins to 15 mins

0.12.1 Product Models

3.1 1 KD\SB 10/06/2022

3

●​ Removed support for
RequestFreightQuote shipping
option

●​ Removed support for
CategoryName option in the
categories[]

●​ Updated description for
ProductUnlimited in the
BuyableProducts model

●​ Removed height,width fields from
the image[]

0.12.6 Other Models
●​ Added gtin and mpn fields to

BuyableProducts metainfo
(allowed names and values)

Other sections : Refined content for better
clarity - no technical changes

14 Updated hyperlinks in
0.7 Categories
0.14.1 Integration Flow Diagram

3.2 1 KD & SB 22/10/2022

15 Added “OrderSource” to the Order Model
Section 0.12.2

3.3 1 KD & SB 23/11/2023

16 Section 0.12.1 Product models;
●​ Added details on GTIN validity to

ProductGroup Data Overview
Section 0.12.6 Other models;

●​ Added details on GTIN validity to
to Allowed Names and Values for
BuyableProduct level Metainfo

3.4 1 AB 30/05/2025

4

Table of Contents

0.1 Overview​ 6

0.2 General API requirements​ 6

0.3 Out of Scope​ 7

0.4 Authentication & Authorization​ 7

0.4.1 External platform/Channel Authentication​ 7

0.4.2 API Operation Level Authorization​ 8

0.5 Products​ 8

0.5.1 Get Products​ 11

0.5.2 Get Single Product​ 12

0.5.3 Create or Update Products​ 13

0.5.4 Update Products Price and Quantity​ 15

0.5.5 Update product listing status​ 17

0.5.6 Pending Responses​ 18

0.6 Orders​ 19

0.6.1 Retrieve Orders​ 21

0.6.2 Retrieve Single Order​ 22

0.6.3 Retrieve Unfulfilled Orders​ 22

0.6.4 Acknowledge Order​ 23

0.6.5 Create/Update Order Fulfillment(s)​ 24

0.6.6 Cancel Order​ 25

0.6.7 Refund Order​ 26

0.7 Categories​ 27

0.8 API versioning​ 28

0.9 Integration process​ 29

0.10 Product and order validation flows​ 31

0.10.1 Product validation flow​ 31

0.10.2 Orders validation flow​ 33

0.11 Recommended frequency for API calls​ 34

0.12 API Models​ 34

0.12.1 Product models​ 35

5

0.12.2 Order models​ 41

0.12.3 Order Fulfillment models​ 43

0.12.4 Order Cancellation models​ 44

0.12.5 Order Refund models​ 45

0.12.6 Other models​ 46

0.12.7 Enums​ 47

0.13 Errors​ 49

0.13.1 Error ID​ 52

0.14 Appendix​ 55

0.14.1 Integration flow diagram​ 55

0.14.2 Endpoint Examples​ 55

6

0.1 Overview
MyDeal Universal API solution is a service based infrastructure exposed via REST Web API for enabling

business to business communication. Predominantly, these services are used to integrate external

e-commerce platforms/channels to onboard their sellers who can sell their products, manage orders,

and order fulfillments on MyDeal Marketplace.

External e-commerce platforms build their system to the API specifications mentioned in this document

to integrate their system that enables below operations for each seller –

-​ Query products

-​ Create new Products

-​ Update existing products content

-​ Update Quantity and Price

-​ Update Publish status of a product to discontinue to sell on marketplace

-​ Retrieve orders placed in marketplace

-​ Retrieve Unfulfilled orders

-​ Fulfill orders with Shipment information

-​ Full Cancellation of unshipped orders

-​ Full or Partial Refund of orders

-​ Retrieve the list of MyDeal category IDs

0.2 General API requirements
MyDeal Universal APIs ensure specific requirements to meet for successful external platform

integration.

●​ All API endpoints support API versioning. Sellers need to pass version header in request

headers as “api-version” (default version is “1”), please refer API versioning
●​ Data communicated to and from API should be in JSON format
●​ Date and time fields should be UTC format in request and same communicated in response

as well
●​ All APIs endpoints should require TLS secured
●​ APIs enforce Token based Authentication, hence external platforms should ensure valid

bearer token generated before requesting endpoint operations. For detailed Authentication

flow, please refer Authentication
●​ Any API endpoint operation requires each SellerID and SellerToken to be passed in

RequestHeaders in order to verify their claims to allow specific operation. Please refer

Integration Process section on the process of obtaining SellerID and SellerToken as part of

integration
●​ Product Key Identifier - External Product ID or Product SKU needs to be the primary

identifier for all product API calls (Product SKU is always mandatory but External Product ID

is optional to pass based on availability in seller system) The MyDeal team will request

sellers to confirm the primary identifier during the initial onboarding phase.

●​ Product SKU must be present on order line items

●​ The Product SKU must support a maximum length of 50 characters and containing all

printable ASCII characters, including spaces

●​ It is advised to create products with a "MyDeal Category ID" in the product data, so that

products get created in the right categories and get maximum exposure.

https://access.channeladvisor.com/ApiDocumentation/Reference/Models/OrderItem

7

0.3 Out of Scope
Currently, below functionality is out of scope of this API document. However, integrating platforms

can check with the MyDeal Integration Support team on handling those scenarios to complete full

integration either by developing custom API or achieve using manual process.

-​ Partial Shipment of an OrderItem

-​ Partial Cancellation of an unshipped OrderItem

-​ Custom freight calculations (this is done by MyDeal support team upon seller requests as part of

Customization/Validation phase)

-​ Onboarding Sellers onto MyDeal (this is done by MyDeal onboarding team, refer Integration

Process)

0.4 Authentication & Authorization

All APIs are secured with TLS and token-based authentication.

Token Based Authentication:

All MyDeal APIs mentioned in this document are secured with Token based Authentication. Hence,

consumers should generate their bearer tokens with their client credentials and pass the token in

subsequent API requests.

0.4.1 External platform/Channel Authentication
External platforms/channels who want to communicate with MyDeal Universal APIs to onboard their

sellers must do a one-time registration with MyDeal as an external platform and get their Client

Credentials such as Client Id, Client Secret key.

These client credentials can be used in future to authenticate the API transactions.

Tokens can be generated as following request:

POST /mydealaccesstoken

Request Headers:

{

"Content-Type":"application/x-www-form-urlencoded”

}

Request body:

{

 grant_type: client_credentials,

 client_Id: <clientId>,

 client_secret: <secret>

}

Response:

{

 ​ "access_token": "1i4QfL8II-FR0W-Q_ x9TVDUf50gE…..",

 "token_type": "bearer",

8

 ​ "expires_in": 3599

}

Use above access_token in subsequent API requests by passing a token in the Authorization Header.

In case authentication fails, API response should be sent as BadRequest (400) and returned with error.

ErrorID Example error message

AuthenticationFailure ClientId Invalid/Client secret Invalid

0.4.2 API Operation Level Authorization
Once Authentication token generated using client id and secret, authorization happens at API request

level to authorize specific seller operation.

Each API operation is limited to a single Seller. So, in each API request for products, orders, fulfillments

updates, below fields should be present in request headers along with bearer token to authorize the

request for that specific seller.

HTTP Header Description

SellerID A unique, seller-specific identifier assigned by your system.

SellerToken A unique, seller-specific token assigned by your system.

Note: SellerID, SellerToken can be obtained from MyDeal Integration team while onboarding specific

Sellers. For more details, please refer to the below Integration process.

In the case of authorization failure, the API response should return with status code UnAuthorized (401)

and one of the following ErrorID values.

ErrorID Example error message

4000 Authorization Failed

4001 Invalid seller Token

4002 Invalid Seller ID

0.5 Products

Products API endpoints are used to manage (create new or update existing) products in the

marketplace. In addition, product price & quantity and listing status can be updated on a frequent

basis as agreed with MyDeal.

Each product is represented as a ProductGroup with one or more BuyableProducts associated with

it. ProductGroup models can be found in Models.

9

MyDeal supports 2 types of Products - Standalone and Variant. Standalone products are single

products without any variations like size or colour. Variants are products having multiple options like

different sizes or colours.

ProductGroup contains key fields which are ExternalProductId and ProductSKU. During Onboarding,

integrating partners will be asked to confirm whether ExternalProductId(Id used to store product in

seller system) can be supplied/used to identify a product or ProductSKU can be used when their

platform can’t send ExternalProductID.

ProductGroup also contains other information common to product groups such as title, description,

specifications and brand etc.

Each product group should have one or more BuyableProducts items to support standalone or

variations to provide sku, price, quantity,product unlimited and shipping cost etc. Each

BuyableProduct contains key fields which are ExternalBuyableProductID and SKU.

ExternalBuyableProductID and SKU should follow the same rules mentioned above for

ProductGroup.

More detailed description and data rules can be found in Models.

Standalone ProductGroup:

Standalone ProductGroup should satisfy below rules –

-​ Only one BuyableProducts item should be present in ProductGroup.

-​ ExternalProductID should be same as ExternalBuyableProductID at Buyableproducts level if

available

-​ ProductSKU should be same as SKU at Buyableproducts level

-​ There should not be any options available at Buyableproducts level

For E.g.,

10

Variation ProductGroup:

A Product can be considered as a variation when below rules met –

If One Buyable Product available -

-​ ExternalProductID should be different from ExternalBuyableProductID at Buyableproducts level

if available

-​ ProductSKU should be different from SKU at Buyableproducts level

-​ At least one option is mandatory at the Buyableproducts level (e.g. size or colour)

If more than one Buyable Product is available -

-​ Buyable Product SKU different from ProductSKU in the ProductGroup

-​ There should be options available at each Buyableproducts level

-​ OptionName should be consistent across all buyable products

Each BuyableProduct item represents a variant of the product containing SKU, price, quantity,

variation Options.

For E.g.,

11

0.5.1 Get Products

GET /products
​

This Endpoint can be used to retrieve a list of products for a specific seller based on the filter criteria

passed.

Endpoint:/products

Method: Http GET

Request Headers: SellerID, SellerToken & api-version(optional and default to ‘1’)

Request Query string parameters:

Parameter Name datatype Default value

listingStatus String (comes from ListingStatus
Enum values)

All (allowed values : Live,
NotLive)

page integer 1

Limit Integer 100 (max 250, but can be
configured at the time of
integration)

Fields String

Fields parameters will be used to filter the fields and give a partial response. Fields follow below

format:

Field1, Field2, Field3(ChildField1, ChildField2)

For e.g.,

ExternalProductId,ProductSKU,Title,Description,Images(Src),BuyableProducts(ExternalBuyableProductID,SKU,P
rice,Quantity)

Note: If the field parameter is empty, the response will be empty.

Request Body: None

Response:

Response will be ActionResponse , where Data in ActionResponse will be an Array of

ProductGroupResponse items that can be standalone or variant product groups.

Please refer to the ProductGroupResponse Model.

12

HttpStatusCode - 200

{

 “ResponseStatus”: “Complete”,
 "Data": [ProductGroupResponse Array]
 “Errors”:[]

}

0.5.2 Get Single Product

GET /products/{idorsku}
​

This Endpoint can be used to retrieve a single product based on ExternalProductID or ProductSKU.

Sellers should pass the appropriate value based on the configuration set for Product Key Identifier.

Endpoint:/products/{idorsku}

Method: Http GET

Request Headers: SellerID, SellerToken & api-version(optional and default to ‘1’)

Request Query string parameters:

If Primary Key is ExternalProductID :

Parameter Name datatype Default value

id string mandatory to pass

If Primary Key is ProductSKU:

Parameter Name datatype Default value

sku string mandatory to pass

Request Body: None

Response:

Response will be ActionResponse, where Data in ActionResponse will be a single ProductGroup item

that can be standalone or variant type.

HttpStatusCode - 200

{

 “ResponseStatus”: “Complete”,
 "Data": ProductGroup
 “Errors”:[]

13

}

0.5.3 Create or Update Products

POST /products
​

This Endpoint can be used to create new products or update existing products content based on

their availability in the marketplace database.

Existence of the product is checked based on Product Key identifier, which is ExternalProductID or

Product SKU at ProductGroup level and ExternalBuyableProductID or SKU at BuyableProducts level

respectively.

Long running batch flow:

This endpoint will not immediately create/update products but it will put the batch of requested

items into a workflow, which is a long running batch process that may include manual verification

process.

Hence, response status from this endpoint always will be ‘ AsyncResponsePending’ with pending Uri

that consists of batch work item id for e.g. /pending-responses?workItemId=100

Sellers may need to poll this PendingUri to check for the latest status of work item to find the status of

those products as part of the work item and find whether they are live or not. If any product fails to

create/update due to errors, the seller needs to rectify those errors and resend the products.

Please refer to the pending-responses endpoint for more information.

Important notes for updates:

-​ As this endpoint is used to update products as well, Seller needs to send delta product updates

which are changed in their system with regards to product content, shipping related information,

variations, images, brand, categories etc

-​ If products have only price stock updates, it is advised to use PriceStock endpoint

‘/quantityprice’ to refresh price and stock because that endpoint performs real time updates to

products and instantly reflect in marketplace, whereas /products endpoint goes through async

batch workflow and that leads to delays in updates.

-​ When a discontinued product receives an update via the /products API call, it will

automatically be re-listed (discontinue flag becomes FALSE).

-​ In order to discontinue a product, ‘/products/listingstatus’ endpoint should be used.

-​ Newly created products status will automatically be set to Live status and there is no need to

send status update via ‘/listingstatus’ endpoint

For detailed fields and their significance, please refer to the ProductGroup.

14

Endpoint:/products

Method: Http POST

Request Headers: SellerID, SellerToken & api-version(optional and default to ‘1’)

Request Query string parameters: None

Request Body: request body should contain an array of ProductGroup items. Items can be

standalone or variant product groups. Please refer to the ProductGroup Model for examples.

Note: It is recommended that products are sent in batches. Maximum number of products per

request is 250 but is configurable at time of integration. If request exceeds count, it will not be

processed and API will return ‘BatchCountExceeded’ Error.

Response:

15

Response will be ActionResponse, with status “AsyncResponsePending” along with PendingUri to

poll by seller.

HttpStatusCode - 200

{

 “ResponseStatus”: “AsyncResponsePending”,
 "Data": null,
 “Errors”:null,
 “PendingUri”:”http://<APIURL>/pending-responses?workItemId=<id>”

}

0.5.4 Update Products Price and Quantity

POST /products/quantityprice
​

This Endpoint can be used to update the price and quantity of existing products based on their

availability on the marketplace.

Existence of the product is checked based on Product Key identifier, which is ExternalProductID or

Product SKU at ProductGroup level and ExternalBuyableProductID or SKU at BuyableProducts level

respectively.

Important Note: Whole product with all of its variants’ quantity and price information should be

sent to this endpoint. For variant type products, ALL available variants(Buyable Products) must be

present in the Productgroup even if there are changes to only a few variants’ price or stock. If any

variants are missing from the product group, that variant will be treated as Out of Stock and not

available to purchase in MyDeal.

Endpoint: /products/quantityprice

Method: Http POST

Request Headers: SellerID, SellerToken & api-version(optional and default to ‘1’)

Request Query string parameters: None

Request Body: request body should contain an array of ProductGroup items. Items can be

standalone or variant product groups.

Seller doesn’t need to pass all info in ProductGroup item for this endpoint. Instead, below fields are

ONLY expected to be present in request and other fields will be ignored automatically.

At ProductGroup level, below fields are required to be passed in.

-​ ExternalProductID

-​ ProductSKU

At BuyableProducts level, below fields are required to be passed in.

16

-​ ExternalBuyableProductID

-​ SKU

-​ Price

-​ RRP

-​ Quantity

-​ ProductUnlimited (If ProductUnlimited is true, Quantity will be ignored. This means that the

seller has an unlimited quantity of the product. If ProductUnlimited is false, quantity is

mandatory and quantity gets updated in the system when the API call is received. It is

recommended that sellers provide correct stock numbers and use ProductUnlimited = False)

Note: The number of products in a batch can be configured at the time of the integration and the

maximum number of products per request is 250. If request exceeds count, it will be not processed

and ‘BatchCountExceeded’ error sent.

Response:

Response will be ActionResponse, where Data in ActionResponse will be an array of

ProductGroupResponse items. Please refer to the ProductGroupResponse model.

HttpStatusCode - 200

{

 “ResponseStatus”: “Complete”,
 "Data": [ProductGroupResponse array],

17

 “Errors”:[]

}

0.5.5 Update product listing status

POST /products/listingstatus
​

This Endpoint can be used to update products’ listing status to unpublish or discontinue them on

marketplace.

Either the whole product or a single variant of the product can be discontinued through this

endpoint.

Note: This endpoint does not support continuing\re-listing a discontinued product. So, to relist a

discontinued product, sellers need to send that product in the POST /products endpoint as an

update to the product.

Endpoint:/products/listingstatus

Method: Http POST

Request Headers: SellerID, SellerToken & api-version(optional and default to ‘1’)

Request Query string parameters: None

Request Body: request body should contain an array of ProductGroup items. Items can be

standalone or variant product groups.

Seller doesn’t need to pass all info in ProductGroup item for this endpoint. Instead, below fields are

ONLY expected to be present in request and other fields will be ignored.

At ProductGroup level, below fields are required to be passed in.

-​ ExternalProductID

-​ ProductSKU

For those BuyableProduct items which need to be discontinued or unpublished, below fields are

required to be passed in.

-​ ExternalBuyableProductID

-​ SKU

-​ ListingStatus (‘NotLive’ to discontinue on marketplace)

Note : To discontinue the whole ProductGroup, all buyableproducts should be included in the API call.

18

Note: Maximum number of products per request is 100 but is configurable at time of integration. If

request exceeds count, it will be not processed and BatchCountExceeded error will be returned.

 Response:

Response will be ActionResponse, where Data in ActionResponse will be an array of

ProductGroupResponse items. Please refer to the ProductGroupResponse model.

HttpStatusCode - 200

{

 “ResponseStatus”: “Complete”,
 "Data": [ProductGroupResponse Array],
 “Errors”:[]

}

0.5.6 Pending Responses

GET /pending-responses?workItemId=<workitemid>
​

This Endpoint can be used to query the status of a long running batch that is submitted by a seller ,

especially CreateorUpdateProducts endpoint (/products) to create or update products.

If the Work Item is still processing or under reviewal workflow, it gives back a response with

“AsyncResponsePending” along with PendingUri until the reviewal process completes.

If the work item is finished processing either success or failed, it gives a response accordingly.

Endpoint:/pending-responses?workItemId=<id>

19

Method: Http GET

Request Headers: SellerID, SellerToken & api-version(optional and default to ‘1’)

Request Query string parameters: WorkItemId

Request Body: None

Response:

If the work Item is still processing, the response below will be sent.

{

“ResponseStatus”: “AsyncResponsePending”,

“PendingUri” :”pollingURl”

 }

If the work Item is complete or complete with errors, below response will be sent. Detailed errors

will be given at each ProductGroup level.

Response will be ActionResponse, where Data in ActionResponse will be an array of

ProductGroupResponse items. Please refer to the ProductGroupResponse model.

HttpStatusCode - 200

{

 “ResponseStatus”: “Complete”,
 "Data": [ProductGroupResponse Array],
 “Errors”:[errors if any]

}

0.6 Orders

Orders API endpoints are used for retrieving unfulfilled orders, order acknowledgement, order fulfillment

and order cancellation.

 Below are the operations exposed by Order API.

-​ Retrieve successfully purchased orders from marketplace based on filtering criteria

-​ Retrieve ready to fulfill orders for further fulfillment by seller

-​ Acknowledge those orders to market place, which are successfully retrieved for fulfillment

-​ Update the fulfillment status and shipping information

-​ Full Cancellation of unshipped order that seller can’t fulfill as a whole

-​ Full or partial refund of Orders

Each order in the marketplace has the following OrderStatus.

-​ ReadytoFulfill : Orders that are successfully processed by the marketplace and are ready to

be fulfilled by the seller. External platforms who want to retrieve new orders that needs

fulfillment, need to query /Orders/unfulfilled GET API

20

-​ SellerAcknowledged: Orders that are successfully retrieved and acknowledged by Seller that

they are in process of fulfillment

-​ Shipped: Orders that are fulfilled successfully and shipping information is updated for all

OrderItems in the order

-​ Refunded: Orders that are fully refunded to customer

-​ All: All Orders that match any of the above four statuses

OrderItems:

By default, an order contains 1 OrderItem. If sellers have configured either Combined Shipping or

Shipping Offers , orders that satisfy the combined shipping \ shipping offer rules will contain more than

1 orderItem.

For example: Assume the seller has configured a shipping offer of “free shipping'' when the customer

buys products from his store totalling $100.

1.​ If the customer purchased 2 products from the seller totalling $100, then it will translate to 1

order having 2 OrderItems.

​ Example : OrderItems 368272200 and 368272220 belonging to the same order 343544536

​

Terminology on Marketplace Portal: On the MyDeal marketplace portal (snapshot shown above), the

OrderID in the API response is called the “Order group No” and the OrderItemID in the API response is

called the “Order No”

2.​ If the customer purchased 2 products, but the total price is less than $100, then it will translate

to 2 separate orders with 1 orderItem each.

​ Example : OrderID X with OrderItemID Y and OrderID M with OrderItemID N

Note: When a customer does a purchase with multiple items in the cart, it could translate to a

●​ single order with multiple orderItems OR

●​ multiple orders with single orderItems OR

●​ a combination of these.

https://sellerhelp.woolworthsmarketplus.com.au/hc/en-gb/articles/10008574375823
https://sellerhelp.woolworthsmarketplus.com.au/hc/en-gb/articles/10008779296399
https://marketplace.mydeal.com.au/

21

An order with multiple orderItems will be created only when :

1.​ sellers have configured combined shipping and/or shipping offers AND

2.​ the products added to cart meet the combined shipping / shipping offer rules set by the seller.

0.6.1 Retrieve Orders

GET /orders
​

This Endpoint can be used to retrieve orders of a specific seller based on Order status that is passed

in.

Please refer to the OrderStatus Enum in Models.

Endpoint:/orders

Method: Http GET

Request Headers: SellerID, SellerToken & api-version(optional and default to ‘1’)

Request Query string parameters:

Parameter Name datatype Default value

orderStatus String (comes from OrderStatus
Enum values)

All

Page Integer 1

Limit Integer 100 (max 250, can be
configurable during
integration)

Request Body: None

Response Body:

Response will be ActionResponse, where Data in ActionResponse will be an array of Order items.

Each Order will contain at least one Order item. Please refer to the Order model.

HttpStatusCode - 200

{

 “ResponseStatus”: “Complete”,
 "Data": [Order array],
 “Errors”:[]

}

22

0.6.2 Retrieve Single Order

GET /orders/{id}
​

This Endpoint can be used to retrieve orders of a specific seller based on Order id passed in. This

OrderId is a unique id generated by the marketplace.

Endpoint:/orders/{id}

Method: Http GET

Request Headers: SellerID, SellerToken & api-version(optional and default to ‘1’)

Request Query string parameters:

Parameter Name datatype Default value

id numeric NoneIt’s a Mandatory field

Request Body: None

Response Body:

Response will be ActionResponse, where Data in ActionResponse will be a single Order with one or

more OrderItems. Please refer to the Order model.

HttpStatusCode - 200

{

 “ResponseStatus”: “Complete”,
 "Data": [Order],
 “Errors”:[] }

0.6.3 Retrieve Unfulfilled Orders

GET /orders/unfulfilled
​

This Endpoint can be used to retrieve orders that are ready to be fulfilled but not acknowledged by

the seller. This endpoint retrieves unfulfilled orders sorted by their order placed date.

This endpoint will always retrieve unfulfilled orders if orders are not acknowledged accordingly.

Sellers need to import these orders into their system and acknowledge each of them.

Note: Seller has to acknowledge each order that is retrieved from this endpoint using ACK endpoint

23

Endpoint:/orders

Method: Http GET

Request Headers: SellerID, SellerToken & api-version(optional and default to ‘1’)

Request Query string parameters:

Parameter Name datatype Default value

Limit Integer 100 (max 250, can be
configurable during
integration)

Request Body: None

Response Body:

Response will be ActionResponse, where Data in ActionResponse will be an array of orders.

Each Order will contain at least one Order item. Please refer to the Order model.

HttpStatusCode - 200

{

 “ResponseStatus”: “Complete”,
 "Data": [Order array],
 “Errors”:[]

}

0.6.4 Acknowledge Order

POST /orders/{id}/acknowledge
​

This Endpoint can be used to acknowledge an order which is successfully retrieved by the seller for

further fulfillment.

Once this endpoint is called and the API response is a success, status of all OrderItems belonging to

that order will be updated to “SellerAcknowledged” and hence it will not be retrieved from

‘/orders/unfulfilled’ endpoint in the next pull by the seller.

Endpoint: /orders/{id}/acknowledge

Method: Http POST

Request Headers: SellerID, SellerToken & api-version(optional and default to ‘1’)

Request Query string parameters:

24

Parameter Name datatype Default value

id numeric None. It’s a Mandatory field

Request Body: None

Response Body:

Response will be ActionResponse, where Data in ActionResponse will be True /False.

HttpStatusCode - 200

{

 “ResponseStatus”: “Complete”,
 "Data": True (or) False
 “Errors”:[]

}

0.6.5 Create/Update Order Fulfillment(s)

POST /orders/fulfill
​

This Endpoint can be used to update fulfillment status and shipping details of orders that are

successfully shipped by the seller.

In the request, each order can contain one or more OrderFulfillment Items with shipping details.

Note: Currently partial shipment of an order with 1 orderitem is not supported.

However, for orders with multiple OrderItems, fulfillment of individual OrderItems is supported.

Endpoint:/orders/fulfill

Method: Http POST

Request Headers: SellerID, SellerToken & api-version(optional and default to ‘1’)

Request Query string parameters: None

Request Body:

Requests can contain one or more OrderFulfillment Items. Each OrderFulfillment Item represents

one order with one or more Order fulfillment line items in it with shipping information.

Note: Maximum number of orders per request is 100 but is configurable at time of integration. If

request exceeds count, it will be not processed and BatchCountExceeded error will be returned.

25

Response Body:

Response will be ActionResponse, where Data in ActionResponse will be a single

OrderFulfillmentResponse item with result. Please refer to the OrderFulfillmentResponse model.

HttpStatusCode - 200

{

 “ResponseStatus”: “Complete”,
 "Data": [OrderFulfillmentResponse],
 “Errors”:[]

}

0.6.6 Cancel Order

POST /orders/{id}/cancel
​

This Endpoint can be used to cancel an order which cannot be fulfilled by the seller as a whole.

Hence, this endpoint expects the orderId and quantity(no significance as of now because system

cancels full order)

Note:

26

a.​ Sellers must use this endpoint for canceling orders which are not shipped at all (due to out of

stock or any other issues). This request will be internally processed as a full refund to the

customer.

b.​ For undispatched orders with a single OrderItem, the system currently supports Full Order

Cancellation only.

c.​ For orders with multiple OrderItems, some of the OrderItems can be canceled. The

cancellation reason should be consistent for all the OrderItems that are to be canceled.

Once this endpoint is called, the specified OrderItems will be canceled and order will be forwarded

to the internal refund queue.

Endpoint: /orders/{id}/cancel

Method: Http POST

Request Headers: SellerID, SellerToken & api-version(optional and default to ‘1’)

Request Query string parameters:

Parameter Name datatype Default value

id numeric It’s a Mandatory field

Request Body:

Requests contain OrderCancellation Item that have one or more orderItemCancellation items.

Response Body:

Response will be ActionResponse, where Data in ActionResponse will be

OrderCancellationResponse.

HttpStatusCode - 200

{

 “ResponseStatus”: “Complete”,
 "Data": OrderCancellationResponse
 “Errors”:[]

}

0.6.7 Refund Order

POST /orders/{id}/refund
​

This Endpoint can be used to refund a dispatched order fully or partially.

Note: This endpoint accepts Refund Amount instead of Quantity of the order. Hence, sellers

preferably use this endpoint for refunding an order based on amount instead of quantity, mostly in

27

case of fully or partially shipped Orders. To refund unshipped Orders, sellers must use /cancel

endpoint.

Once this endpoint is called, based on the refund amount for the product and/or shipping amount,

MyDeal system will calculate the refund and mark the order as Fully Refunded or Partially Refunded.

So, for the seller, it is just the amount that they want to refund to the customer.

In the case of orders with multiple OrderItems,

1.​ Individual OrderItems can be refunded separately if needed

2.​ If the API request contains multiple OrderItems, the RefundReason should be consistent across

all the OrderItems

Endpoint: /orders/{id}/refund

Method: Http POST

Request Headers: SellerID, SellerToken & api-version(optional and default to ‘1’)

Request Query string parameters:

Parameter Name datatype Default value

id numeric It’s a Mandatory field

Request Body:

Requests contain OrderRefund Item that have one or more OrderItemRefund items.

Response Body:

Response will be ActionResponse, where Data in ActionResponse will be OrderRefundResponse.

HttpStatusCode - 200

{

 “ResponseStatus”: “Complete”,
 "Data": OrderRefundResponse
 “Errors”:[]

}

0.7 Categories

GET /categories

This endpoint returns the list of MyDeal categories and their IDs. Products can be tagged to those

categories which have “IsAssignable: TRUE” in the response. The categoryID obtained from this API call

28

can be used in the /products call (Categories -> CategoryID field) to categorize the products while they

are being created.

Endpoint: /categories

Method: Http GET

Request Headers: None (no authentication required)

Request Query string parameters: None

Request Body: None

Response Body: Data response in the following format

It is recommended that the categories are refreshed daily. MyDeal team will also send an update to

channels/sellers when there are major changes to category hierarchy.

Alternatively, the MyDeal category list is available via an excel file that can be downloaded from

https://assets.mydeal.com.au/content/marketplace/MyDeal_Product_Category_List.xlsx

0.8 API versioning
All API endpoints support versioning. “api-version” header needs to be passed in request headers along

with other authentication headers. By default, “api-version” defaults to “1”.

https://assets.mydeal.com.au/content/marketplace/MyDeal_Product_Category_List.xlsx

29

For each new API upgrade/release, a new version may be released and it will be communicated to all

sellers so that sellers can make amendments in their system to support the new version. However, the

current version will be supported until the seller uses the new version.

If an API release has any breaking changes, It will be communicated to the seller to quickly make their

changes to support the new version and test it in the sandbox environment. Once the seller confirms, a

new version will be rolled out to live and the old version will be deprecated.

0.9 Integration process

Here are the steps involved in successfully integrating your store via the MyDeal API.

Step 1 - Select your Product Key Identifier: ExternalProductID or ProductSKU

●​ This value must be unique per product and will be used for all API calls

●​ If you have a unique SKU for each product, use ProductSKU as Product Key Identifier for the

MyDeal API Integration

●​ If you may have duplicate SKUs across your products, use ExternalProductID as Product Key

Identifier for the MyDeal API Integration

Step 2 - Confirm your Shipping Arrangement on MyDeal

●​ Find all available shipping options described in this article: Setting up Shipping for your Products

https://sellerhelp.woolworthsmarketplus.com.au/hc/en-gb/articles/10007995086223

30

Step 3 - MyDeal will set up your store in the Sandbox Environment and provide your Sandbox API

credentials.

●​ Sandbox API URL = [to be provided by the MyDeal Team]

●​ Sandbox ClientID = [to be provided by the MyDeal Team]

●​ Sandbox ClientSecret = [to be provided by the MyDeal Team]

●​ Sandbox SellerID = [to be provided by the MyDeal Team]

●​ Sandbox SellerToken = [to be provided by the MyDeal Team]

●​ Sandbox Store URL = [to be provided by the MyDeal Team]

Step 4 - Once you have received your Sandbox API credentials, please test each of the following API

Integration Flows in the Sandbox Environment. See section 0.9 for more details on product and order

validations.

●​ Authentication (Endpoint: '/mydealaccesstoken')

●​ New product creation and content update (Endpoint: '/products')

●​ Product price and stock update (Endpoint: '/products/quantityprice')

●​ Fetch and acknowledge orders (Endpoint: '/orders', ‘/orders/acknowledge’)

●​ Fulfill orders (Endpoint: '/orders/fulfill')

●​ Order cancellation and refund (Endpoints: '/orders/{orderId}/cancel', '/orders/{orderId}/refund')

NOTE:

●​ Pre-filled Postman Scripts to test the integration flows in our Sandbox Environment will be

provided via email.

●​ Refer this spreadsheet to see all the test scenarios that have to be run on the sandbox. Please

enter answers to the questions in each of the test scenarios as you run the tests and return the

spreadsheet to the MyDeal team, so that the MyDeal team can verify your test results.

●​ Test Credit Card Details for Order Integration Testing will be provided by email. This step can only

be done once you've created Products via the API. Please ensure you are only purchasing

products from your store, otherwise, you will encounter errors.

●​ To fast track testing please set up your products with 'Free' / 'Flat' shipping arrangement in the

Sandbox Environment. To list your products with a Freight Calculator, you can create your freight

schemes via the marketplace portal when you are ready to integrate to our Live Environment.

Step 5 - Please notify the MyDeal team once you have tested all the API integration flows in the Sandbox

Environment. The MyDeal team will verify your test results and provide any feedback.

Step 6 - Once all tests have been validated, MyDeal will create your store in the Live Environment and

provide your Live API credentials

●​ Live API URL = [to be provided by the MyDeal Team]

●​ Live ClientID = [to be provided by the MyDeal Team]

●​ Live ClientSecret = [to be provided by the MyDeal Team]

●​ Live SellerID = [to be provided by the MyDeal Team]

●​ Live SellerToken = [to be provided by the MyDeal Team]

●​ Live Store URL = [to be provided by the MyDeal Team]

https://drive.google.com/file/d/1AzbI_OB5LSrJ8r13oikgAB-Y-3HbcM4L/view?usp=sharing
https://sellerhelp.woolworthsmarketplus.com.au/hc/en-gb/articles/10009659355023
https://sellerhelp.woolworthsmarketplus.com.au/hc/en-gb/articles/10009659355023

31

Step 7 - Publish your products in the Live Environment to start selling on MyDeal!

●​ To list your products with your Shipping Rate Table Calculator, apply the following arrangements

per product:

■​ ShippingCostCategory = 'Custom'

■​ CustomFreightSchemeID = <will be auto generated when you create your freight

scheme via the marketplace portal >

0.10 Product and order validation flows

0.10.1 Product validation flow

Content Management process:

Content management refers to keeping the product details (title, images, description and other

text fields) up to date and in-sync between MyDeal and the integrating system. Content

management process should happen on a schedule (say every 6 hours) at the partner system or as

agreed with MyDeal.

1.​ GET Products - The integrating system should first request a full catalog of products that exist in

the marketplace in case they want to reconcile differences between the two systems based on

their system logic. This step can be skipped when onboarding for the first time with new

products.

https://sellerhelp.woolworthsmarketplus.com.au/hc/en-gb/articles/10008253707535
https://sellerhelp.woolworthsmarketplus.com.au/hc/en-gb/articles/10008253707535

32

This step can also be skipped if the integrating system maintains delta updates based on their

own system logic and does not have the need to pull a full catalog of products from MyDeal.

Note: All products belonging to the seller (whether live or not) will be returned in the

response.

2.​ Create/Update Products – The integrating system can push new products and\or update existing

via the /products endpoint. Existing products should be updated ONLY when there has been

changes to the products since the last time the content management process ran. MyDeal

system will process the API request and changes will be reflected on MyDeal website if the API

call succeeds. Should any of the products fail validation, API will return a list of failed products

with the associated errors.

​ !!! IMPORTANT NOTE : Products should be sent in batches. Maximum batch size is 250.

Note: Create/Update endpoint creates an asynchronous batch process in the MyDeal system.

Hence, immediate response would be the work item id. This Id needs to be saved in the

partner system to check the status of the work item to find whether products were pushed

successfully or if any error has been returned.

3.​ Unpublish Products - Upon reconciling differences between MyDeal and their system, if

products have to be discontinued on MyDeal (for example, due to out of stock conditions), the

integrating system should send a list of products that have become unavailable in their system.

Those products would be marked as discontinued in the marketplace and will no longer be

available for buying.

Quantity and Price Management

Quantity and price should be updated on a more frequent basis (say every 30 mins) due to the critical

need for keeping quantity and price up-to-date. Frequency can be configured as per partner’s

preference.

Integrating system should send a list of only those products that have price and stock updates from the

last update. Upon successful response, price and stock are directly updated in the product listing on

MyDeal. Should there be any errors, the API will return a list of failed products with the associated

errors.

33

0.10.2 Orders validation flow

Order Management

1.​ Retrieve Unfulfilled Orders – Integrating systems should first request a list of orders with the

status "ReadyForFulfillment". These orders are successfully placed orders that are ready for

shipment by sellers.

2.​ Acknowledge order - For each order that is imported into the partner system, they should send

an order acknowledgement to MyDeal, indicating a successful import.

Note: If order is not acknowledged, it will continuously appear in Unfulfilled Orders retrieved in

step 1 above.

3.​ Update Shipment Info – Integrating system can send shipment updates to MyDeal for all

shipped orders. This will update orders as “Dispatched” along with tracking code and dispatch

carriers .

4.​ Order Cancellation – the integrating system can send cancellation requests for orders that the

seller cannot fulfill.

5.​ Order refund - the integrating system can partially or fully refund ‘shipped’ orders

​
​

34

0.11 Recommended frequency for API calls

Operation Suggested frequency \
values

Details

Product content Update Frequency 6 hours Frequency to push product content updates.

It is expected that the integrating platform sends only
delta updates and not the entire product catalog.

Quantity and Price Update Frequency 30 mins Frequency to update quantity and price information.

It is expected that the integrating platform sends
price\stock updates for only those products whose
price\stock on MyDeal are not the same as that on the
integrating platform.

Unfulfilled Orders Retrieval frequency 15 mins Frequency to fetch ‘ready to fulfill’ orders from
marketplace

Batch Size – Create/Update Products 250 Maximum number of products per batch that should
be sent in a /products API call to create new products
or update existing ones. It is highly recommended that
products are sent in batches.

Batch Size – Order Fulfillments 100 Maximum number of orders per batch that should be
sent via order fulfillment API

Batch Size – Unfulfilled Orders Retrieval 250 Maximum number of orders per batch that will be
returned by MyDeal when the integrating platform
fetches unfulfilled orders

0.12 API Models
Below are API Models that are used in Request or Response.

Products:

ProductGroup BuyableProducts Category

Option Image MetaInfo

ProducGroupResponse BuyableProductResponse

Orders:

Order OrderItem Address

OrderFulfillment OrderFulfillmentItem OrderFulfillmentResponse

OrderCancellation OrderItemCancellation OrderCancellationResponse

35

Other:

ActionResponse Error Field

0.12.1 Product models

ProductGroup:

This is a single product group with one or more BuyableProduct items to sell on the marketplace. ProductGroup

contains at least one BuyableProduct item irrespective of type of the product.

If Product is standalone without any variations, only one BuyableProduct item is available in a product group.

If Product is Variant with more than one variation, each BuyableProduct’s ExternalBuyableProductId and SKU will

be unique and different from product group level Id and SKU.

Important note:

ExternalProductId or ProductSKU is used to uniquely identify a product. Similarly, BuyableProductId or SKU

should be used at BuyableProducts level.

Shipping Fields:

ShippingCostCategory:

This field is mandatory and specifies the type of shipping for a product. Please refer to this help article to know

about the various shipping options available on MyDeal.

ShippingCostStandard:

1.​ If ProductGroup ShippingCostCategory is “Flat” or “FlatAnyQty”, ShippingCostStandard field is required

else product fails validation step.

2.​ “FlatAnyQty” should be used only in case the product shipping cost is a flat amount irrespective of the

quantity of units ordered.

3.​ FreeShipping - Product can be set as “free shipping” when “ShippingCostCategory” is “Flat” and

“ShippingCostStandard” as “0”. Currently, we support Standard Shipping ONLY.

4.​ If ProductGroup ShippingCostCategory is “Custom”, ShippingCostStandard is ignored.

CustomFreightSchemeID:

CustomFreightSchemeID is required when ShippingCostCategory=’Custom’. If you want to list your products

with a Freight Calculator, you can create your freight schemes via the marketplace portal when you are

ready to integrate to our Live Environment. CustomFreightSchemeID can be obtained from the

marketplace when the freight scheme is created.

a.​ For sandbox testing, it is recommended to use FREE or FLAT shipping for simplicity.

ShippingCostCategory ShippingCostStandard Description

Flat 0 Product has Free Shipping

Flat greater than 0
Product has flat rate shipping Australia

wide per-item

https://sellerhelp.woolworthsmarketplus.com.au/hc/en-gb/articles/10007995086223
https://sellerhelp.woolworthsmarketplus.com.au/hc/en-gb/articles/10009659355023

36

FlatAnyQty greater than 0

Product has flat rate shipping Australia

wide irrespective of quantity ordered

Custom -

Product has a freight calculator.

CustomFreightSchemeID should be

provided. ShippingCostStandard will be

ignored.

Categories

Sellers can categorize their products by sending a MyDeal CategoryID in the /products API call. The list of MyDeal

categories can be obtained from the /categories API call. The categoryID should be sent in the Categories[] ->

CategoryID field of the /product API call.

Note :

a.​ It is required to assign products with a MyDeal Category ID when they are created. Please select the most

appropriate category as far down the hierarchy as possible and the product will automatically be tagged

up the hierarchy. Refer to our category tagging guide here.

i.​ For example, if categoryID is 3213 (Appliances > Kitchen Appliances > Mixers > Hand Mixers) , the

product will get tagged to Appliances, Kitchen Appliances, Mixers and Hand Mixers automatically.

b.​ Once categorized, the category of the product cannot be updated.All category updates are ignored. Sellers

must contact MyDeal team for any changes required to the category after creation.

ProductGroup Data Overview:

Field Data type Required Description

ExternalProductId string Conditional External product Id stored as part of the seller channel,

which is conditional.

Typically, this field should be the same for a single product

throughout its lifetime. If there is a change in

ExternalProductId, the marketplace will treat it as a new

product.

This field is mandatory when the seller chooses

“ExternalProductID" as the unique identifier for the

products

ProductSKU String Required Product Unique SKU

Title string Required Product title or product name. Maximum 200 chars

Description string Required Product Description. Can contain Html. PDFs and images
included in the description will be downloaded and stored
in the MyDeal servers.

Specifications string Optional Product specifications/fine print. This can contain html.

Brand string Optional brand name of the product if applicable

https://sellerhelp.woolworthsmarketplus.com.au/hc/en-gb/articles/9972494841487

37

Tags string Optional comma delimited tags used to filter or search products, say
search keywords

Condition string Optional new / used / refurbished.
Default value is ‘New’ if not provided

Images Image[] Required Image urls collection
For variant products, all variant images including the ones
specified in variationimageurl must be included in this
collection.

Categories Category[] Required Category collection
Note :

-​ Though category is a collection, categoryID is the
only supported option

-​ Currently CategoryID is an array but the system
considers only the first value sent in the
“CategoryID” field.

Weight Decimal Optional Product weight

WeightUnit String Optional Weight unit. Default to kilograms

Length Decimal Optional Product length

Height Decimal Optional Product height

Width Decimal Optional Product width

DimensionUnit String Optional Product dimension unit. Default to cm.
Applies to Length, Height and width fields.

GTIN String Optional Global trade item number, include UPC, EAN (in Europe),
JAN (in Japan), and ISBN. Must be a valid 8, 12, 13 or 14
digit GTIN.

MPN String Optional Manufacturer part number

ShippingCostCategory String Required Used to specify how to calculate shipping cost.
Shipping cost category enum

CustomFreightSchemeI
D

Numeric conditional This is required when ShippingCostCategory=”Custom”.

Seller gets FreightSchemeID when they create a freight
scheme on MyDeal marketplace

RequiresShipping Boolean Optional

Defaults to true.

If true, the product needs shipping. Products with
“RequiresShipping: FALSE” will not be accepted, as this is
not supported at this time.

https://sellerhelp.woolworthsmarketplus.com.au/hc/en-gb/articles/10009659355023
https://sellerhelp.woolworthsmarketplus.com.au/hc/en-gb/articles/10009659355023

38

ShippingCostStandard numeric Conditional

Specify shipping cost in this field, when
ShippingCostCategory is "Flat"or "FlatAnyQty"
See description above

IsDirectImport Boolean Required

The direct import status of a product. FALSE indicates that
the product is shipped from within Australia. TRUE
indicates that the product is shipped from outside
Australia.

MaxDaysForDelivery Numeric Required
The maximum number of calendar days estimated for
delivery of the product to the customer.

DeliveryTime String Required

The estimated delivery time frame for delivery of the
product to the customer. This will be displayed on the
listing. Preferred format is "_ business days", eg. "5-10
business days".

Has48HoursDispatch Boolean Optional

If TRUE, then a label "24-48 hour dispatch" will be shown
on the listing and you confirm that the product will be
dispatched from the warehouse within 24 to 48 hours of
purchase. If FALSE, then no label will show.

ProductSpecifics Field[] Optional Used to send any supporting product information in key
value pair that gets used in product search
filters/refinements such as age group, material etc

BuyableProducts BuyableProducts[] Required BuyableProducts Collection, which contains variant or
standalone product details.

At least one item should be available

BuyableProducts:

BuyableProducts is part of ProductGroup and represents an individual product or its variant. Product price, stock,

status are always considered from this model.

Variant Options:

Variant options are required only for variant products. Variant options should NOT be defined for stand alone

products.

If the product is a variant :

1.​ At least 1 variant option is required

2.​ Maximum number of variant options is 3.

3.​ The variant option counts and OptionName of the options should be consistent across all variants of a

product.

These options will be shown as drop-down options on the product details page on MyDeal. For standalone

products, information such as colour, materials etc can be sent via the ProductSpecifics.

39

BuyableProducts Data Overview:

Field Data type Required Description

ExternalBuyableProductId String Conditional

External Buyable product Id stored as part of the seller channel,

which is conditional.

This should be passed if the seller chose to pass

ExternalProductID as the unique product identifier.

SKU string Required
SKU of a buyable product and it should be unique for each
BuyableProduct item

Price numeric Required Standalone product/variant item price

Quantity numeric Conditional
Standalone product/variant item Quantity.
If ProductUnlimited = true, Quantity will be ignored.

ListingStatus Enum Optional

This is ignored in all endpoints except /listingstatus endpoint.

Note: ListingStatus can be Live, NotLive. This field is used only

in update product listing status endpoint to update status of

product. Otherwise, it is READ ONLY field by seller in other

endpoints.

Options Option[] Required

For Standalone product, this must be empty
For variants, Options field must have one or more options.

Note: Options limited to 3

RRP numeric Optional Standalone product/ variant item RRP price

ProductUnlimited Boolean Optional

Defaults to FALSE. When set to TRUE, it means that the seller
has unlimited quantity of the product and the "Quantity" will be
ignored.

40

It is recommended to set this to FALSE and provide the correct
quantity of available stock in the "Quantity" field

MetaInfo Field[] Optional

Meta Info field contains additional optional supporting details of
the product to show in UI other than description and
specifications
Refer allowed named and values for metainfo

Option:

Option model represents variant options. Position field decides the order of appearance of options in the MyDeal

product detail page. Position of a given option name should be consistent across all variants. If no positions are

provided, default positions are calculated by MyDeal.

Field Data type Required Description

OptionName string Required

Option Name for e.g., Size or Colour
If this exceeds 10 characters, the OptionName will be displayed as
“Option” on the MyDeal product details page.

OptionValue string Required Option value for e.g., S, M, L, XL

Position numeric Optional
Unique OptionName position.
for e.g., Size position as 1, Colour position as 2 etc.

Image:

Images can range from 1 to 30 max. At least one image should be available to make the product Live on MyDeal.

Src should be an external image Url and position can also be passed in the request.

Field Data type Required Description

Id numeric Required Image ID

Src string Required External image Url

Position numeric Optional
Position to show in the marketplace. If not specified, default
positions will be created.

​

41

Category:

Field Data type Required Description

CategoryId Numeric Required
MyDeal predefined Category ID that can be found in the above
link.

ProductGroupResponse:

This response will be sent in create/update products, update product status or price operations.

Field Data type Required Description

ExternalProductId string Optional Unique Product Id

ProductSKU String Required Unique product SKU

BuyableProductResponses BuyableProductResponse[] Required BuyableProductResponses Collection

Result Enum Required RequestResult Enum (Success/Fail)

Errors Error[] Optional
Error collection added if any errors in
the process

BuyableProductResponse:

Item level Errors will be present in the Errors array if applicable.

Field Data type Required Description

ExternalBuyableProductId String Optional Unique id

SKU string Required Unique SKU

Result Enum Required RequestResult Enum (Success/Fail)

Errors Error[] Optional Error collection added if any errors in the process

0.12.2 Order models

Order:

Order is a group of one or more order line items purchased by a customer. Order Id is uniquely generated by the

marketplace.

Field Data type Required Description

OrderId numeric Required Unique OrderID from marketplace

42

PurchaseDate Datetime Required Order created date in UTC

OrderStatus Enum Required OrderStatus enum

SubTotalPrice numeric Required Total items price inclusive of taxes but excludes shipping

TotalPrice numeric Required Total items price including Shipping, taxes

TotalShippingPrice numeric Required Total shipping price includes taxes

TaxInclusive boolean Required Always true

Currency string Optional Default is "AUD"

CustomerEmail String Required Customer email address

ShippingAddress Address Required Customer shipping address

PaymentMethod String optional

Standard text that set up by MyDeal onboarding team
during seller set up in system

PaymentReference string Optional Invoice reference number if order is invoiced and paid to seller

CustomerDateOfBirth Date Optional
Customer Date Of Birth provided in dd/mm/yyyy (If order
requires it)

OrderSource string Optional
The marketplace banner from which the customer purchased the
product. Ex: MyDeal, BigW etc

LineItems OrderItem[] Required Order line items collection

OrderItem:

Field Data type Required Description

OrderItemId numeric Required unique Order Line Item Id generated by marketplace

SKU string Required SKU of the product

Quantity numeric Required Quantity of the line item

UnitPrice numeric Required One unit price of line item

UnitPriceExcCommission numeric Required One unit price of line item excluding MyDeal commission

TotalPrice numeric Required Unit Price * Quantity

TotalShippingPrice numeric Required Total shipping price of line item

ProductId numeric Required product Id in marketplace

43

ProductTitle numeric Required

VariantOption string Optional If variant, this has all options of this variant comma separated

ShippingRequired string Required False - Voucher, True - Non-Voucher item to be posted

ShippingMethod Enum Optional

Standard text that set up by MyDeal onboarding team
during seller set up in system

PrivateNotes string Optional Notes to supplier if any

FulfillmentStatus boolean Optional True - Shipped, false - yet to be shipped

SellerAcknowledged Boolean Optional True – Seller Acknowledged False- seller not acknowledged

DispatchDate Date Optional Dispatched date in UTC

DispatchCarrier String Optional Shipping carrier

TrackingCode String Optional Tracking code of shipment

Address:

Field Data type Required Description

FirstName string Required

LastName string Required

Phone string Required

CompanyName string Optional

Address1 string Required

Address2 string Optional

Suburb string Required

State string Required

PostalCode string Required

CountryCode string Required Default is “AU”

0.12.3 Order Fulfillment models

OrderFulfillment:

OrderFulfillment is a group of one or more order line items.

44

Field Data type Required Description

OrderId numeric Required Unique OrderID from marketplace

FulfillmentItems OrderFulfillmentItem[] Required Fulfillment Items.

OrderFulfillmentItem:

Field Data type Required Description

OrderItemId numeric Required unique Order Line Item Id generated by marketplace

SKU string Required SKU of OrderItem

DispatchedDate string Optional ShippedDate of OrderItem in UTC. Defaults to request sent date.

DispatchCarrier string Optional DispatchCarrier of OrderItem

TrackingCode string Optional TrackingCode of OrderItem

OrderFulfillmentResponse:

Field Data type Required Description

OrderId numeric Required Ordered ID

Result Enum Required RequestResult Enum (Success/Fail)

Errors Error[] Optional Item level Error collection added if any errors in the process

0.12.4 Order Cancellation models

OrderCancellation:

OrderCancellation is a group of one or more order line items.

Field Data type Required Description

OrderId numeric Required Unique OrderID from marketplace

Items OrderItemCancellation [] Required Cancellation Items

OrderItemCancellation:

Field Data type Required Description

Id numeric Required unique Order Line Item Id generated by marketplace

45

SKU string Required SKU of OrderItem

Reason string Required Reason for cancellation

OrderCancellationResponse:

Field Data type Required Description

OrderId numeric Required Ordered ID

Result Enum Required RequestResult Enum (Success/Fail)

Errors Error[] Optional Item level Error collection added if any errors in process

0.12.5 Order Refund models

OrderRefund:

OrderRefund is a group of one or more order refund line items.

Field Data type Required Description

OrderId numeric Required Unique OrderID from marketplace

Items OrderItemRefund[] Required Refund items

OrderItemRefund:

Field Data type Required Description

Id numeric Required Unique Order Line Item Id generated by marketplace

Reason Enum Required RefundReason Enum

RefundAmount decimal Required Refund amount for the product

RefundShippingAmount decimal Optional Refund amount for the shipping

OrderRefundResponse:

Field Data type Required Description

OrderId numeric Required Order ID

46

Result Enum Required RequestResult Enum (Success/Fail)

Errors Error[] Optional Item level Error collection added if any errors in process

If Order Refund is failed due to any reason, ErrorCode, ErrorID will be returned along with the

response. Refer Errors for more information.

0.12.6 Other models

ActionResponse: ActionResponse is a standard response sent from any MyDeal API endpoint.

ResponseStatus is the status of the operation. If the operation succeeded, it gives either Complete or

CompleteWithErrors. In case of failure, status will be Failed.

If the Operation is exposed as async long processing batch(for e.g., create or update products), ResponseStatus will

be “AsyncResponsePending” along with PendingUri, which consists of the URL to poll by external platforms for the

status of that async batch for further processing decisions.

Data is the actual response body, which will be populated in case of Complete or CompleteWithErrors status.
CompleteWithErrors will contain Errors at each item level.

Field Data type Required Description

ResponseStatus String Required

Enum values from ResponseStatus enum.

AsyncResponsePending,
Complete,
CompleteWithErrors,
Failed

Data Generic Type Required

Actual response body, this is generic type and varies for each API
endpoint. For details please refer specific endpoint response
section

Errors Error[] Optional Parent level Error collection added if any errors in the process

PendingUri String Optional
This is available for async long running batches. In this case,
ResponseStatus is “AsyncRespnsePending”

Error:

Field Data type Required Description

ID String Required
Unique ErrorID say, InvalidToken. Refer ErrorID allowed values in
ErrorCodes

Code String numeric Error code

47

Message String Required Error Message

Field:

Field Data type Required Description

Name String Required Name of the field

Value String Required Value of the field

Allowed Names and Values for BuyableProduct level Metainfo (applicable only for variant products):

Name (exact match) Value (must be in double
quote)

Description

variationimageurl “{your absolute image url}” To specify the image at variant level.
This field supports only one image URL.
This should be the main image of the
“variant” product.

shippingweight “3” To specify the weight at variant level.

shippingheight “30” To specify the height at variant level.

shippingwidth “20” To specify the width at variant level.

shippinglength “40” To specify the length at variant level.

gtin “886691186281” Global trade item number, include UPC,
EAN (in Europe), JAN (in Japan), and ISBN
at variant level. Must be a valid 8, 12, 13
or 14 digit GTIN.

mpn “HSC0424PP” Manufacturer Part Number at variant
level

0.12.7 Enums

 Enums will be communicated in string representation as part of request and response. So, please

consider Enum string values.

ListingStatus:

Integer Value String Value Description

0 NotLive Products which are not live and customer can’t purchase

48

1 Live Products which are live and customer can purchase

2 Pending Products which are under review by MyDeal team

OrderStatus:

Integer Value String Value Description

0 All
All orders except Delivery On Hold orders such as
canceled/refunded

1 ReadytoFulfill Successfully placed orders require fulfillment by seller

2 SellerAcknowledged Orders acknowledged by seller for further fulfillment

3 Shipped Order which has been fulfilled

4 Refunded Order that is fully refunded to customer

FulfillmentStatus:

Integer Value String Value Description

0 All All orders irrespective of shipment status

1 unShipped Orders which are not shipped

2 Shipped Orders which are shipped

ShippingCostCategory:

Integer Value String Value Description

0 FreeShipping
This is Obsolete in API V2.3 doc. Instead, please use
ShippingCostCategory = 'Flat' and ShippingCostStandard= 0

1 Flat
Flat Rate. Standard rate or express rate per unit
Ex: If customer orders 2 quantities of a product which has FLAT
$10 shipping, the total shipping cost = $20

2 Custom
Use Custom, if a freight calculator has been set up by the seller
via the MyDeal marketplace portal

3 FlatAnyQty

Similar to “Flat” category however the flat amount applies for
any quantity of the product ordered
Ex: If customer orders 2 quantities of a product which has
FLAT_ANY_QTY $10 shipping, the total shipping cost = $10

RequestResult:

49

Mainly this enum is used to send item level results such as BuyableProductResponse, OrderFulfillmentResponse.

Integer Value String Value Description

0 Success Operation succeeded

1 Fail Operation failed

ResponseStatus:

Mainly this enum is used to send global level response status in the ActionResponse model.

Integer Value String Value Description

0 Success Operation succeeded

1 Fail Operation failed

RefundReason:

Integer Value String Value Description

1 CANCELLED_CHANGE_OF_MIND Change of mind

6 COMPENSATION Compensation

7 DAMAGED_ON_ARRIVAL Damaged item on arrival

9 DISPATCH_ERROR Incorrect product shipped

11 FAULTY Faulty item

13 FREIGHT_DISCOUNT Freight discount

15 LOST_IN_POST Lost in post

16 NOT_AS_DESCRIBED Not as described

17 OUT_OF_STOCK Out of stock

18 OVERSEAS_ADDRESS Outside delivery area

19 PRICE_ERROR Price error

23 RETURN_TO_SENDER Return to sender

32 MISSING_PARTS Missing parts

33 DELIVERY_ADDRESS_NOT_CONFIRMED Delivery address not confirmed

50

0.13 Errors

All errors, warnings, and other alerts will be communicated using Error object. This object specifies an ID and a

code to match the error to an internal error identifier, and a message providing details on the error. Since all error

feedback is communicated in this manner, every API response is returned with HTTP Status OK, unless there is any

unrecoverable exception on our system. In case of an unhandled exception, it returns HTTP Status

InternalError(500).

There are two types of Errors can be sent in response.

1.​ System Errors

System errors indicate that a problem has occurred as a result of an outage, a bug, or other system issue.

The exact details of system errors are not communicated to sellers; the error message will be generic and

will indicate that there is a communication issue that is being addressed. All ErrorID values in the 3000,

7000, and 8000 ranges are treated as system errors

2.​ Custom Errors

Custom errors indicate that a problem can be resolved through sellers’ action (usually because they have

submitted invalid data). This is the primary mechanism for providing feedback to the seller, so custom

errors are generally communicated back to the seller seconds after they are received.

​

​

Error Placement:

The placement of an error within the response depends on the type of request that was issued and the type of

error that occurred.

Response-level errors

https://access.channeladvisor.com/ApiDocumentation/Reference/Models/Error

51

When an error occurs that prevents the request as a whole from being processed by your API, the ResponseStatus

of the ActionResponse will be 3 / Failed, and all errors will be returned at the root level of the response. Example

response-level errors : 3001 / SystemUnavailable, 4002 / InvalidSellerID, 4001 / InvalidToken, etc.

Item-level errors

When processing a request that contains a batch of items, an error may occur whose scope is limited to a specific

entity in the batch. In these cases, errors will be returned in the element's response object for which it occurred.

For example, if 10 BuyableProduct items out of a 100-product batch failed our system's item validation, we would

return the errors on the 10 corresponding BuyableProductResult objects in the response, but not at the response

level or on any of the other 90 products.

The only time the ActionResponse should contain a ResponseStatus of 3 / Failed is when there are no elements in

the response body because the entire request as a whole could not be processed.

If elements are returned, the ResponseStatus should be 1 / Complete or 2 / CompleteWithErrors, and contain

errors at the element level.

https://access.channeladvisor.com/ApiDocumentation/Reference/Models/ActionResponse
https://access.channeladvisor.com/ApiDocumentation/Reference/Models/BuyableProduct
https://access.channeladvisor.com/ApiDocumentation/Reference/Models/BuyableProductResult
https://access.channeladvisor.com/ApiDocumentation/Reference/Models/ActionResponse
https://access.channeladvisor.com/ApiDocumentation/Reference/Models/ResponseStatus
https://access.channeladvisor.com/ApiDocumentation/Reference/Models/ResponseStatus

52

0.13.1 Error ID

Below are generic error IDs used to communicate errors.

Integer value string value

1000 Info

2000 Warning

53

3000 SystemFailure

3001 SystemUnavailable

3002 RateLimitExceeded

4000 AuthorizationFailure

4001 InvalidToken

4002 InvalidSellerID

4003 AuthenticationFailure

5000 ProductNotFound

5001 ProductMissingRequiredFields

5002 ProductFailedDataValidation

5003 ProductFailedCreate

5004 ProductFailedUpdate

5100 ProductMissingCategory

5101 ProductInvalidCategory

5200 ProductPendingReview

6000 OrderNotFound

6001 InvalidOrder

6002 InvalidOrderStatus

54

6100 ShipmentFailed

6101 InvalidTrackingNumber

6102 InvalidShippingCarrier

6103 InvalidShippingClass

6200 RefundFailed

6201 UnsupportedRefundReason

6300 CancellationFailed

6301 UnsupportedCancellationReason

6400 AcknowledgementFailed

7000 InvalidRequest

7001 MissingRequiredParameter

7002 InvalidRequiredParameter

8000 BatchNotFound

8002 BatchCountExceeded

55

0.14 Appendix

0.14.1 Integration flow diagram

Download Integration Flow Diagram PDF

0.14.2 Endpoint Examples
View postman script

https://assets.mydeal.com.au/content/marketplace/IntegrationFlow.pdf
https://documenter.getpostman.com/view/5616750/TVzPkdQs#95dfe16b-2ebb-4921-888e-ed7d2bfdfac2

	
	
	
	MyDeal Universal API Documentation
	0.1 Overview
	0.2 General API requirements
	0.3 Out of Scope
	0.4 Authentication & Authorization
	0.4.1 External platform/Channel Authentication
	
	0.4.2 API Operation Level Authorization

	0.5 Products
	0.5.1 Get Products
	
	0.5.2 Get Single Product
	0.5.3 Create or Update Products
	0.5.4 Update Products Price and Quantity
	0.5.5 Update product listing status
	0.5.6 Pending Responses

	0.6 Orders
	0.6.1 Retrieve Orders
	0.6.2 Retrieve Single Order
	0.6.3 Retrieve Unfulfilled Orders
	0.6.4 Acknowledge Order
	0.6.5 Create/Update Order Fulfillment(s)
	0.6.6 Cancel Order
	0.6.7 Refund Order

	0.7 Categories
	
	0.8 API versioning
	0.9 Integration process
	
	
	0.10 Product and order validation flows
	0.10.1 Product validation flow
	
	0.10.2 Orders validation flow

	​​
	0.11 Recommended frequency for API calls
	0.12 API Models
	
	0.12.1 Product models
	0.12.2 Order models
	0.12.3 Order Fulfillment models
	0.12.4 Order Cancellation models
	0.12.5 Order Refund models
	0.12.6 Other models
	
	0.12.7 Enums

	0.13 Errors
	0.13.1 Error ID

	
	0.14 Appendix
	0.14.1 Integration flow diagram
	0.14.2 Endpoint Examples

